I’ve moved to WordPress: http://bobtisdale.wordpress.com/

Sunday, March 28, 2010

The Inverted ENSO Signal In The SST Residuals Of The East Indian And West Pacific Ocean

I’ve moved to WordPress.  This post can now be found at The Inverted ENSO Signal In The SST Residuals Of The East Indian And West Pacific Ocean
#############
OVERVIEW

This post illustrates an inverted ENSO signals contained within the Global SST anomaly dataset, using SST anomaly residuals for the East Indian and West Pacific Oceans. SST anomaly residuals in this post are defined as the SST anomalies for specific areas of the globe minus global SST anomalies.

This inverted ENSO signal contained within the East Indian and West Pacific Ocean dataset confirms the dipole effect between the Eastern and Western Tropical Pacific that extends into the East Indian Ocean that was discussed in two other posts about the multiyear aftereffects of ENSO events:
More Detail On The Multiyear Aftereffects Of ENSO - Part 2 – La Nina Events Recharge The Heat Released By El Nino Events AND...
AND:
More Detail On The Multiyear Aftereffects Of ENSO - Part 3 – East Indian & West Pacific Oceans Can Warm In Response To Both El Nino & La Nina Events

EAST INDIAN-WEST PACIFIC SST RESIDUALS SHOW AN INVERTED ENSO SIGNAL

Figure 1 compares Global SST anomalies and the SST anomalies for the East Indian-West Pacific Ocean, a dataset with the coordinates of 60S-65N, 80E-180. It’s well understood that the Global dataset includes an ENSO component. Global SST anomalies increase when Eastern and Central Tropical Pacific SST anomalies rise in response to an El Nino, and Global SST anomalies fall when a La Nina causes Eastern and Central Tropical Pacific SST anomalies to drop. The East Indian and West Pacific SST anomalies in Figure 1 follow the basic rises and falls of the Global dataset, but there is additional variability, indicating the East Indian and West Pacific SST anomalies are impacted by something other than the “normal” ENSO signal.

http://i44.tinypic.com/28r35hv.png
Figure 1

In Figure 2, the Global SST anomalies (with its ENSO component) have been subtracted from the East Indian and West Pacific SST anomalies, leaving the East Indian and West Pacific SST anomaly residual. Again, this residual illustrates the difference between Global SST anomalies and the East Indian-West Pacific SST anomalies. Recognize the curve?
http://i43.tinypic.com/25jfg9t.png
Figure 2

In Figure 3, I’ve scaled the NINO3.4 SST anomaly data and inverted it by multiplying it by a factor of -0.15. As illustrated, the curves of the East Indian and West Pacific SST anomaly residuals and the inverted and scaled NINO3.4 SST anomalies are remarkably similar. They correlate well for the entire term of the data, but they do diverge slightly at times.
http://i39.tinypic.com/27ybwyc.png
Figure 3

THE CAUSE OF THIS OPPOSING EFFECT

A much-simplified version: during a significant El Nino, warm water from the Western Pacific Warm Pool (to depths of 300 meters) sloshes to the east and spreads across the surface of the central and eastern tropical Pacific. Warm water that was below the surface of the Pacific Warm Pool and excluded from the Sea SURFACE Temperature measurement is now included, raising SST anomalies in the central and eastern tropical Pacific.

A number of things happen during the La Nina that follows. Trade winds increase in the tropical Pacific, and with strengthened Equatorial Currents, the warmer-than-normal water in the central and eastern tropical Pacific is carried back to the western tropical Pacific. Some of the warm water helps to recharge the warm water in the Pacific Warm Pool, and some of it is carried by ocean currents north into the Northwest Pacific, and some of it is carried south by ocean currents into the Southwest Pacific, and some of it is carried into the eastern tropical Indian Ocean by a current called the Indonesian Throughflow. The stronger-than-normal trade winds during the La Nina also cause a decrease in cloud cover in the tropical Pacific, which causes an increase in Downward Shortwave Radiation (visible light). This additional Downward Shortwave Radiation warms the surface and subsurface waters of the tropical Pacific, and the trade winds and ocean currents carry the warm water to the west, where it is transported into the Northwest and Southwest Pacific and into the eastern tropical Indian Ocean, as described above, by ocean currents.

The result is a visible dipole (seesaw-like) effect between the central and eastern tropical Pacific and the western Pacific as an ENSO event goes from El Nino to La Nina. Refer to Figure 4.
http://i48.tinypic.com/xc6s0l.gif
Figure 4

THE “REST OF THE WORLD” SST ANOMALY RESIDUALS

Someone was bound to ask, What does the rest of the world oceans look like? So I’ve added this section to the post.

Figure 5 is a comparison graph of global SST anomalies and the SST anomalies for the area between the latitudes of 60S and 65N that is not included in the East Indian and West Pacific Ocean dataset. The coordinates for the “Rest of the World” SST anomaly data are 60S-65N, 180-80E. As illustrated, the variations in the two datasets mimic one another, with the “Rest of the World” subset varying more than the global data.
http://i44.tinypic.com/2nc3nnl.png
Figure 5

The same process was used to create the residuals. That is, the Global SST anomalies (which have a strong ENSO component) are subtracted from the “Rest of the World” SST anomalies. The residual illustrates how that dataset differs from the global data. The result was not unexpected. It shows that the “Rest of the World” data has yet another, but smaller, ENSO component. In Figure 6, I’ve scaled NINO3.4 SST anomalies by a factor of 0.05 for comparison to the “Rest of the World” SST anomaly residual.
http://i43.tinypic.com/x0pnc6.png
Figure 6

KEEP IN MIND THIS POST WAS ABOUT SST ANOMALY RESIDUALS

Again, the intent of this post was to provide another means of illustrating the east to west Pacific SST dipole effect, by showing the inverted signal within the residuals of the East Indian-West Pacific dataset. Recall that the SST residuals contain the positive trend of the global SST anomaly curve. This changes perspective. Also, if we look at the SST anomaly data of East Indian through the Eastern Pacific Oceans, it is clear that the positive ENSO signal dominates. Comparing it to scaled NINO3.4 SST anomalies, Figure 7, there is little lag, at least on the leading side of most of the major variations. This appears to indicate that the opposing East Indian and West Pacific dataset only suppresses the global response to the primary ENSO signal being produced in the Central and Eastern Tropical Pacific. Then, when looking for a secondary ENSO signal in the global dataset, it should be a lagged positive signal.
http://i39.tinypic.com/rr4j14.png
Figure 7

SOURCE
The data used in this post is available through the NOAA NOMADS website:
http://nomad1.ncep.noaa.gov/cgi-bin/pdisp_sst.sh

4 comments:

John said...

Hi Bob -

I just want to make sure I understand the significance of the post. You explain it well, but I just want to make sure I am appreciating the next logical step.

So, in essence, this supports your concept of a lagged ENSO signal in the global SST anomalies that is not picked up by traditional models?

Thanks, as always.

Bob Tisdale said...

John: You asked, "So, in essence, this supports your concept of a lagged ENSO signal in the global SST anomalies that is not picked up by traditional models?"

This post confirms that the dipole relationship exists.

Keep in mind that this post shows an effect that's in the residuals, not actual SST anomalies. In past posts, using SST anomalies (not residuals), I've shown that East Indian and West Pacific Oceans Warm in response to El Nino and La Nina events, and it's the secondary La Nina-related warming (that's not accounted for by simply removing the ENSO signal from global temperatures) that biases global SST anomalies upward, creating an upward trend.

Anonymous said...

The most noticeable feature of the past fortnight has been the decrease in Pacific Ocean heat content, with values east of the dateline dropping to their lowest values since April 2009, indicating the deeper ocean is also slowly cooling. Likewise, sea surface height in the central and eastern Pacific is also decreasing.

Bob

Thanks for your efforts. The above quote by the aussies appears to signal a fairly rapid and 'longer term' drop in pacific temps. Am I right?

Bob Tisdale said...

Anonymous: You asked, "Thanks for your efforts. The above quote by the aussies appears to signal a fairly rapid and 'longer term' drop in pacific temps. Am I right?"

I believe the BOM limits its discussion about OHC to the tropical Pacific on their ENSO Wrap-Up webpage (Dated March 31), which is where the quote came from:
http://www.bom.gov.au/climate/enso/


In other words, OHC "east of the dateline dropping to their lowest values since April 2009," is really only an indication that the Eastern tropical Pacific released heat during the El Nino. And the drop in sea surface height also indicates the release of heat.

Sorry, I don't interpret what they wrote as an indication of a long-term decrease. We'll have to wait for the next NODC OHC update (this month?) to see if the 5-year decline in tropical Pacific OHC continues, and I would think it should:
http://i49.tinypic.com/2nut183.png

Donations

Tips are now being accepted.

Comment Policy, SST Posts, and Notes

Comments that are political in nature or that have nothing to do with the post will be deleted.
####
The Smith and Reynolds SST Posts DOES NOT LIST ALL SST POSTS. I stopped using ERSST.v2 data for SST when NOAA deleted it from NOMADS early in 2009.

Please use the search feature in the upper left-hand corner of the page for posts on specific subjects.
####
NOTE: I’ve discovered that some of the links to older posts provide blank pages. While it’s possible to access that post by scrolling through the history, that’s time consuming. There’s a quick fix for the problem, so if you run into an absent post, please advise me. Thanks.
####
If you use the graphs, please cite or link to the address of the blog post or this website.