I’ve moved to WordPress. This post can now be found at October to December 2010 NODC Ocean Heat Content (0-700Meters) Update and Comments
###################################INTRODUCTION
The National Oceanographic Data Center’s Ocean Heat Content (OHC) data for the depths of 0-700 meters are available through the KNMI Climate Explorer Monthly observations webpage. The NODC OHC dataset is based on the Levitus et al (2009) paper “Global ocean heat content(1955-2008) in light of recent instrumentation problems”, Geophysical Research Letters. Refer to Manuscript. It was revised in 2010 as noted in the October 18, 2010 post Update And Changes To NODC Ocean Heat Content Data. As described in the NODC’s explanation of ocean heat content (OHC) data changes, the changes result from “data additions and data quality control,” from a switch in base climatology, and from revised Expendable Bathythermograph (XBT) bias calculations.
This update includes the data through the quarter of October to December 2010. There has been an upswing in the Indian Ocean OHC data. And in the tropical Pacific, there’s been a delayed response to ENSO or a downward shift. Other than those, there are no other major changes with the latest 3 months on which to report.
GLOBAL
The Global OHC data through December 2010 is shown in Figure 1. It continues to be remarkably flat, considering the rise that took place during the 1980s and 1990s.
http://i53.tinypic.com/jrsoc3.jpg
Figure 1
In an upcoming post, I’ll present only the post-2003 data, the era when ARGO floats dominated OHC data.
A CHANGE OF COORDINATES
I’ve changed the coordinates of the Indian Ocean and South Pacific data. The coordinates I was using for the Indian Ocean (60S-30N, 20E-145E) caused too much overlap with the North Pacific and Tropical Pacific data. So I’ve shifted the coordinates so that the Indian Ocean is now represented by 60S-30N, 20E-120E. This required that I shift the South Pacific; it’s coordinates are now 60S-0, 120E-90W.
TROPICAL PACIFIC
Figure 2 illustrates the Tropical Pacific OHC data (24S-24N, 120E-90W). The major variations in tropical Pacific OHC are related to the El Niño-Southern Oscillation (ENSO). Tropical Pacific OHC drops during El Niño events and rises during La Niña events.
http://i54.tinypic.com/2vrxw1i.jpg
Figure 2
At least it should. Figure 3 compares tropical Pacific OHC to NINO3.4 SST anomalies (a commonly used ENSO proxy) where the NINO3.4 SST anomalies have been scaled and inverted (multiplied by a scaling factor of -0.15) to help show the relationship. The drop in the tropical Pacific OHC during 2010 is unusual. It should be rising (recharging) during this period. It’s impossible to tell at this time if this is a delayed response or a downward shift.
http://i52.tinypic.com/24n2m2r.jpg
Figure 3
The equatorial Pacific, on the other hand, Figure 4, is responding as one would expect.
http://i53.tinypic.com/f51snm.jpg
Figure 4
We’ll have to keep an eye on the tropical Pacific OHC data.
INDIAN OCEAN
Figure 5 illustrates the Indian Ocean OHC data. Note the sudden upswing since 2006. It’s odd when we consider the trends for most of the other ocean basins since 2003 are flat or negative. (I’ll illustrate this in an upcoming post.)
http://i54.tinypic.com/1fwilz.jpg
Figure 5
The Tropical Pacific OHC dropped and the Indian Ocean OHC rose; one might think warm water has migrated from the Tropical Pacific to the Tropical Indian Ocean. If we combine the Tropical Indian and Pacific subsets and compare it to the Tropical Pacific, Figure 6, we can see the two datasets mimic one another and that the recent drop is suppressed. It’s possible (and likely) there has been some migration of warm water from one subset to the other (likely because the current known as the Indonesian Throughflow does flow between the tropical Pacific and Indian Oceans).
http://i52.tinypic.com/1vj2f.jpg
Figure 6
In fact, this transport appears to take place in the animation of NODC OHC from 2005 to 2010, Animation 1, which was taken from the video that's included in the post The Electric Kool-Aid Ocean Heat Content Animation.
http://i53.tinypic.com/5dvryd.jpg
Animation 1
And here’s the YouTube video from that post. (The animation with music starts around the 2 minute mark, so check your volume setting if you’re at work.)
YouTube Link:http://www.youtube.com/watch?v=PUONorBCcxU
But the recent rise in Indian Ocean OHC is not limited to the tropics. Figure 7 compares Indian Ocean OHC to the OHC of the Indian Ocean South of 24S. The OHC of the mid-to-high latitudes also has the sudden surge.
http://i56.tinypic.com/9693zl.jpg
Figure 7
And yes, that rise and fall in the OHC of the Indian Ocean South of 24S during the late 1990s does look odd. In fact, if we smooth those two datasets, Figure 8, we can see how unusual that spike appears.
http://i53.tinypic.com/2pqkrpv.jpg
Figure 8
THE HEMISPHERES AND THE REST OF THE BASINS
http://i56.tinypic.com/2j49chc.jpg
(9) Northern Hemisphere
#####
http://i54.tinypic.com/2w67vbn.jpg
(10) Southern Hemisphere
#####
http://i56.tinypic.com/10cqgl5.jpg
(11) North Atlantic (0 to 75N, 78W to 10E)
#####
http://i53.tinypic.com/2vkfehv.jpg
(12) South Atlantic (0 to 60S, 70W to 20E)
#####
http://i55.tinypic.com/r02xrl.jpg
(13) North Pacific (0 to 65N, 100 to 270E, where 270E=90W)
#####
http://i52.tinypic.com/2w1y0dj.jpg
(14) South Pacific (0 to 60S, 120E to 290E, where 290E=70W)
#####
http://i51.tinypic.com/2eb5t39.jpg
(15) Arctic Ocean (65 to 90N)
#####
http://i53.tinypic.com/nvcw0k.jpg
(16) Southern Ocean (60 to 90S)
SOURCE
All data used in this post is available through the KNMI Climate Explorer:
http://climexp.knmi.nl/selectfield_obs.cgi?someone@somewhere
14 comments:
Thanks for the update, Bob. Very interesting.
Can you easily update the chart you had comparing current content to the content predicted by Hansen? I found that chart illuminating. If it's too much effort, please do not bother.
Thanks, as always.
John: I had planned to include that comparison in the upcoming post about ARGO-era OHC. I've got a couple more graphs to generate, one of which is a trend comparison of all of the basins, which is time consuming, so I'll probably post it next week.
Regards
Thanks Bob,
" The drop in the tropical Pacific OHC during 2010 is unusual. It should be rising (recharging) during this period. It’s impossible to tell at this time if this is a delayed response or a downward shift."
I'm sure you are aware of this page
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/enso.shtml
it includes this OHC data
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ocean/index/heat_content_index.txt
which suggests that OHC reached it nadir Sept/Oct 2011 and has been rising since. I'm not sure why the NODC data looks different.
HR: The Heat Content data you've linked is the temperature anomalies of upper 300meters for the equatorial Pacific. I believe it's for that latitudes of 5S-5N. The equatorial Pacific OHC data shown in Figure 4 above (also 5S-5N) also mimics NINO3.4 SST anomalies.
It's the tropics (24S-24N) that aren't following suit.
Yep thanks I just realized that and was about to post a correction.
The curious thing is there is no trend associated with the Equatorial OHC data (at least since 1979). Any thoughts why that might be?
To answer my own question I guess that if this region is being constantly fed deep cold water via upwelling on the west coast of S.America and any changes are quickly driven out of the region by the ENSO process then there would be a good reason why there is no trend at the epicentre of this process.
Bob
Thanks for pointing out that the NODC OHC data is now available through 2010 and that the data “continues to be remarkable flat”. R. S. Knox and I published a paper “Recent Energy Balance of the Earth” (here) in which we estimated the “flatness” by the slope. Using the annual NODC OHC global data from 2003 to 2009 we determined a slope of 0.009±0.129 W/m2. The new data from 2003 to 2010 for 2010 shows a slope of 0.031±0.064 W/m2. The “flatness” continues.
This value of slope is to be compared with the “missing energy” of about 1 W/m2 suggested from models by Trenberth and Fassulo (Science 328 pp 316-317, 2010).
David Douglass
Dept of Physics
University of Rochester
HR said: "To answer my own question I guess that if this region is being constantly fed deep cold water via upwelling..."
That's as good an answer as I've seen written, and it's reasonable easy to explain.
David: Unfortunately, your hyperlink didn't work. You'll probably have to provide the address.
The URL to the Knox Douglass paper is
David Douglass
It seems that now the Equatorial Pacific is heating up:
Mean and anomalous equatorial temperatures
Upper Ocean Heat Content Anomaly
Given the huge volume of warm water that accmulated during the 2010-2011 La Niña in the West Pacific and is now heading east as La Niña weakens, I expect an El Niño in the coming months, probably bigger than the 2009-2010 one.
(I hope the links work. If not, the websites are:
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ocean/weeklyenso/wkteq_xz.gif
http://www.cpc.ncep.noaa.gov/products/intraseasonal/heat_tlon.shtml)
And here's the address of the Knox & Douglass paper David referenced above:
http://www.pas.rochester.edu/~douglass/papers/KD_InPress_final.pdf
Thanks, David
Anonymous @ March 18, 2011 12:05 PM: Sorry. Didn't mean to sit on your comment for a week. With the links, it was stuck in the spam filter. I'll have to check that more often.
The subsurface equatorial Pacific temperature anomalies this year are more advanced than they were in March 2009, but, curiously, the average of the forecast models are looking more toward ENSO neutral.
It'll be interesting to see what happens. Will ENSO follow the models and remain neutral next season? Will we get a series of small El Nino events like we did after the 1986/87/88 El Nino and after the 1997/98 El Nino? Or we there be a sizable El Nino? Time will tell.
Post a Comment